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Abstract. A general solution of the Bhabha-Corben equations for a classical spinning 
particle with radiative damping is obtained. The solution only contains ‘slow runaway 
terms’ which are compatible with the principle of undetectability of small charges. Some 
conserved quantities are obtained which could be used to represent the total linear and 
angular momentum of the particle-field system. It is shown that the whole radiative effect 
may be renormalised in terms of ‘effective variables’ which describe a particle with constant 
mass in the frame of the Bhabha-Corben formulation without self-interaction radiative 
terms. 

1. Introduction 

Although several formulations (Bhabha and Corben 1941, Waysenhoff and Raabe 
1947, Bargmann et a1 1959, Halbwachs 1960) of the equations of motion for a 
relativistic classical spinning particle have been proposed, we shall only consider in this 
paper the Bhabha-Corben (1941) formulation which incorporates in a definite way the 
electromagnetic self-interaction. The original formulation contained explicit magnetic 
moment terms but it was argued later by Corben (1961) that the correct normal 
magnetic moment interaction was already contained in the equations with g = 0. Hence 
we shall concentrate on this case, which can then be considered to provide a complete 
description of a spinning particle in interaction with its own electromagnetic field. 

There are two particular cases of this formulation which are of interest. The first is 
obtained by eliminating the spin variables of the particle. In this case the Bhabha- 
Corben equations reduce automatically to the Lorentz-Dirac equation for non-spin- 
ning particles with radiative damping. The general solution of these equations contains 
the famous ‘runaway solutions’ which are usually ruled out by postulating some 
appropriate boundary conditions (Rohrlich 1965). One may also get rid of these 
solutions if one introduces the principle of undetectability of small charges of Bhabha 
and Rohrlich (Rohrlich 1973). According to this principle, in the limit of vanishing 
charge the trajectory of the particle must have a limit which must coincide with the 
trajectory of the corresponding neutral particle with the same mass. If this physically 
sound principle is accepted, only the trivial motion U, = constant remains. 

The second particular case may be obtained by dropping the non-linear Lorentz- 
Dirac radiative term in the Bhabha-Corben equations. This case has been considered 
extensively by Corben (1961, 1968) and the general solution is also known. 

5 On leave of absence from the Universidad Simdn Bolivar, Caracas, Venezuela. 
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However, exact solutions of the motion equations in the general case, including both 
spin variables and radiative effects, have not to the best of our knowledge yet been 
reported. 

In this paper we show that the general Bhabha-Corben formulation contains two 
basic rates of evolution. The first corresponds to the runaway solutions of the 
Lorentz-Dirac equation. The second is found in the runaway solutions associated with 
the internal degrees of freedom introduced by the spin variables of the particle. It is a 
remarkable fact that, while the first type of runaway behaviour is again ruled out by the 
principle of undetectability of small charges, the second type is perfectly compatible 
with this principle. We then find the most general solution containing only runaway 
terms of the second type. 

It is also shown that in this case the whole radiative effect may be renormalised by 
introducing ‘eff ecfive variables’ which obey the Bhabha-Corben equations without the 
self-interacting radiative term. The connection between the effective variables and the 
original ones may be constructed explicitly. It may also be seen that the renormalised 
mass is a constant and the kinematical conditions of the Bhabha-Corben formulation 
are verified. However, the interaction with an external electromagnetic field in terms of 
the effective variables cannot be minimal. 

Since the equations of motion are invariant under the PoincarC group, a conserved 
total linear and angular momentum for the particle-field system should exist. In the 
process of finding the general solution of the motion equations, some conserved 
quantities are found explicitly which are natural candidates to play this role. 

Recently Barut (1978, 1979) has proposed a model to understand the structure of 
the observed leptons as quantum excitations of the electron due to its radiative 
self-interaction. By considering iterative solutions of the Bhabha-Corben equations 
the anomalous magnetic moment of the classical particle is computed. The lepton 
masses are then obtained through some heuristic correspondence argument with the 
proposed quantum equation. 

Even if the basic intuition contained in this work is correct, a better mathematical 
treatment of the classical equations is needed, both to confirm the calculation of the 
muon mass (Barut 1978) and to deal with leptons of higher mass (Barut 1979). 

We think that the solutions obtained in the present work could be used as the 
starting point for a more rigorous discussion of the classical part of the argument. These 
solutions are also necessary as zero-order solutions in any perturbative approach to the 
classical equations in the presence of an external electromagnetic field. 

The organisation of the paper is as follows. In 0 2, the general Bhabha-Corben 
equations of motion are written in terms of normalised spin variables and the two 
fundamental rates of evolution of the problem are discussed. In 0 3, the conserved 
quantities of the problem are found and used to exhibit the general solution of the 
motion equations and to discuss the renormalisation of the radiative effects. 

2. Equations of motion and rates of evolution 

We shall consider the description of a classical spinning particle with radiation damping 
given by the Bhabha-Corben (1941) equations 

- (mu,+6, ,uY)=ga(i i ,+zi  d 2 2 U , )  

dT 
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(2.2) 
where dots represent derivatives with respect to the proper time T, m is the classical 
mass of the particle, U ,  its four-velocity, 6,, the tensor variable associated with the 
classical spin and CY the fine-structure constant. All through the paper the metric is 
taken to be g,, =diag(l, -1, -1, -1) and the units are chosen to have h = c = 1. 

: A  ; A  
&,U = UFAU uv-u(+,Au U ,  

This system must be completed with the kinematical conditions: 

U F U ,  = 1 (2.3) 

&,,UY = 0.  (2.4) 
The equations (2.1)-(2.4) provide a complete description of a classical spinning 

particle in interaction with its own electromagnetic field. 

2.1. The spin vector 

Let us introduce the axial four-vector 
* ,A  p $, = E,,Ap(T U . 

The spin tensor is given by the dual equation 

(2.1.1) 

(2.1.2) 1 A IP = Z E y u A p U  s 
and satisfies the condition (2.4) automatically. 

form 
The dynamical equation (2.2), written in terms of the spin vector, takes the simple 

1 A 

U$, - U , s ,  = 0. (2.1.3) 

Since $, is orthogonal to U ,  from its definition (2.1.1), one obtains immediately 

3,P = 0. (2.1.4) 

Hence, $, is a spatial vector with constant norm: 
2 A A  

S,S@ = -U = constant. 

We may then normalise the spin variables by introducing 

s, = 3,/ff ff,, = 6,,/u. 

(2.1.5) 

(2.1.6) 

Let us now divide equation (2.1) by U and introduce for convenience 

(2.1.7) 4 M = m / u  

d 1 2 - (Mu,  +&,,UY) = Z E ( i i ,  + U U , ) .  

E = TCY/ff. 

The first equation of motion may now be written as 

(2.1.8) 

The second equation of motion (2.2) is completely equivalent to (2.1.3), whichstates 
the proportionality between S,  and U,. Hence this equation may be written in the form 

S, = A(T)u,.  (2.1.9) 

The system (2.1.8) and (2.1.9) is equivalent to the original dynamical system (2.1) 
and (2.2). The structure of the spin variables of the particle has been considerably 
simplified with the introduction of the unitary spatial spin vector S,. 

dT 
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2.2. Two rates of evolution of the system 

Let us now consider two scalar quantities from which one may obtain the characteristic 
rates of evolution of the problem. 

The first quantity is the function A ( T )  introduced in (2.1.9): 

A(T)  = S,uW. (2.2.1) 

By contraction of the dynamical equation (2.1.8) with S ,  it is straightforward to 
obtain the equation 

2 M  
A(.) = -A(T)  

E 
(2.2.2) 

which has the general solution 

A ( T )  = A  exp(r/To) TO= c/2M. (2.2.3) 

This rate of evolution is characteristic of the ‘runaway’ solutions of the Lorentz-Dirac 
equation for non-spinning particles. It is evident that (2.2.3) is incompatible with the 
principle of undetectability of small charges of Bhabha and Rohrlich (Rohrlich 1973). 
According to this principle, in the limit a + 0, the trajectory of the particle must have a 
definite limit and this limit must be the trajectory of the neutral particle. This principle 
may be used in the Lorentz-Dirac equation to rule out the undesirable ‘runaway’ 
solutions. In the present case A(7) diverges in this limit unless A = 0. 

The second scalar quantity of interest is the norm of the four-acceleration: 

(2.2 -4) 2 
W (T)=-U,Zi@. 

By contraction of (2.1.8) with U, it is easy to obtain 

MW2(‘T) = i E W  (T )G(7) .  (2.2.5) 

Using (2.1.8) again to eliminate ii, one finds the equation 

2Mc 2 M  
1 + E  

W (7)  W ( 7 )  = 2 W 2 ( T )  + E ( 1 +  E 2 )  A 2 ( T ) ,  (2.2.6) 

which has the general solution 

w’(T) = ~ x ~ ( ~ M T / E ) + P ~  e x p [ 4 ~ ~ ~ / ( 1  + e 2 ) ]  
(2.2.7) 

= A2(7) + P 2  eXp(2T/Tb) 

with 

TA = (1 + E2)/2ME. (2.2.8) 

This is the second rate of evolution characteristic of the problem. 
The two rates of evolution are essentially different in character. While the first type 

is ruled out by the principle of undetectability of small charges, the second type is 
perfectly compatible with it. In fact, for E + 0, and taking A = 0 one has 

(2.2.9) 

which is exactly the behaviour of the norm of the four-acceleration for a neutral 
spinning particle described by the Bhabha-Corben equations. This ‘compatible 
runaway’ is one of the most interesting characteristics of the problem. 

2 2  w = @  =constant, 
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3. Conserved quantities 

The invariance of the dynamical equations under the PoincarC group suggests the 
existence of a conserved four-vector and of an antisymmetric tensor which could be 
interpreted as the total linear and angular momentum of the particle-field system. From 
a mathematical point of view, these conserved quantities could then be used as first 
integrals in order to obtain the general solution of the dynamical equations. 

A most useful approach to the problem is obtained by introducing the dynamical 
tetrad 

where we have introduced the four-vector 

The tetrad will be linearly independent if the invariant 
I (? )  = ~ € , u A p u ~ U y s A p p  1 = -pppp  (3.3) 

is different from zero for all T. 

It is a straightforward exercise to show that 

I ( T )  = $ ( w 2 ( ~ ) - A 2 ( ~ ) )  =a@' e x p ( 2 ~ / ~ b ) .  (3.4) 

Hence the tetrad will be independent for all T if 

@ ZO. (3.5) 

In the case @ = 0, the vector p ,  vanishes identically and the spin variables disappear 
in the dynamical equations. Hence only the well known 'runaway solutions' of the 
Lorentz-Dirac equation are left and those are incompatible with the principle of 
undetectability of small charges except for the trivial motion U ,  = constant. Accord- 
ingly we shall only consider the case @ # 0 from now on. 

3.1. Conserved four-vectors 

Let us now look for a conserved four-vector C, which we represent in the dynamical 
tetrad 

(3.1.1) 

From the equations of motion (2.1.8) and (2.1.9) it is possible to obtain the useful 

c , ( T )  = T ( T ) U ,  + [ ( T ) ~ N  + r l ( T ) P ,  + l ( T ) s , .  

relations 

M 
1+€ 

p, = y ( - a ,  + A ( T ) S , + ~ E ~ , )  

2  ME 2 M h ( ~ )  4 M  
ii, = W ( T ) U ,  +- 1 + € 2 U @  + €(1+ 2) s, + 1 + E 2 P N  

S ,  = A(T)u ,  

and then it is easy to see that the conservation equations 

C , ( T ) = o  

(3.1.2) 

(3.1.3) 

(3.1.4) 

(3.1.5) 
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are equivalent to the system 

P ( T )  + W ~ ( T ) ~ ( T )  + A ( T ) [ ( T )  = 0 

We shall only consider the case 

A(?) = 0. 

(3.1.6) 

(3.1.7) 

(3.1.8) 

(3.1.9) 

(3.1.10) 

As we have already discussed, this condition is necessary in order to rule out all the 
solutions with ‘runaway’ behaviour of the first type, incompatible with the principle of 
undetectability of small charges. Within this condition we are going to obtain the most 
general solution containing only ‘slow runaway terms’ compatible with this principle. 

The condition (3.1 . lo) implies 

s, = 0 i(7) = 0. (3.1.11) 

Hence the term [ S ,  in (3.1.1) is a constant which may then be absorbed in the conserved 
vector C,. Accordingly we shall consider the representation 

C,(T)’ T ( T ) U ,  + 5 ( . ) 4  +V(‘)P,. (3.1.12) 

The conservation equations take now the simpler form 

F ( T )  + W 2 ( T ) 5 ( T )  = 0 

By introducing the variable 

(3.1.13) 

(3.1.14) 

the system (3.1.13) may be separated into the third-order differential equation 

t 2 T y t )  + tT”(t) + (3.1.15) 

and the auxiliary equations 

1 + E 2  1 + E 2  
q(f)=---(T(t)-T”(t)) .  M ( ( t )  = -- T’(t) 2MEt 

(3.1.16) 
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The general solution of (3.1.15) is a linear combination of the three independent 
solutions: 

7TZ 
T l ( t )  = 1 -- JUJ (Z)Jl-OJ ( 2 )  (3.1.17) 

sin ~ T O  

7TZ 
T2(t)  = sin 7T0 (exp (-irw)J,  ( z ) J ,  - 1 ( z  ) - exp(imo)J-, ( z  )Jl-, (2)) (3.1.18) 

7Tz 
T3(t)  = ~ (exp( -i.rrw)J, ( z )J, -1 ( z  ) + exp(i.rrw)J-, ( z ) J 1  -, ( z  )) 

where the J’s  are Bessel functions of the first kind and 

(3.1.19) 
2sin TO 

(3.1.20) 1 .  
2 =?lt w = i + i / 2 ~ .  

The three functions verify the hyperbolic relation 

T: ( t )  - T: ( t )  - T: ( t )  = 1. (3.1.21) 

The normalisation has been chosen in such a way that the three corresponding 
conserved vectors are orthonormal: 

(3.1.22) 

(3.1.23) 

Of the three conserved vectors obtained, only the temporal one C1, has a limit when 
t+O(r+-cO). Hence we may think of some multiple of this vector as a natural 
candidate to represent the conserved total linear momentum of the particle-field 
system. 

The classical motion of the particle is now completely determined. One may invert 
the three linear combinations of U,, Li, and p+ equated to constants to obtain the 
expression for the four-velocity in terms of three constant orthonormal vectors which 
are determined from the initial conditions of the problem. Then the worldline ~ ” ( 7 )  of 
the particle or any other physically interesting quantity may be obtained from this 
expression. It may be seen that a particle at rest for t+O (r+-m) begins to 
self-accelerate, following an helical trajectory with increasing radius. This ‘radial 
runaway’ belongs to the ‘slow regime’ and disappears for (Y +O. 

It is a remarkable fact that the whole radiative effect may be renormalised in terms 
of ‘effective variables’. In fact, one may introduce an effective position vector X ” ( r )  and 
an effective spin tensor X , y ( ~ )  in such a way that the equations of motion (2.1) and (2.2) 
are completely equivalent to the equations 

(3.1.24) 

i”” = i,*UhUv -i ,*lJAU” (3.1.25) 

where MR is some constant mass and one has 

(3.1.26) 

where S ,  is a constant spatial spin vector. Equations (3.1.24) and (3.1.25) are identical 
to the Bhabha-Corben equations for a spinning particle without radiative damping. 

The effective four-velocity U, may be constructed explicitly in terms of the ‘old 
variables’ and the three conserved vectors obtained. The whole construction is unique 

U”U, = 1 X F V  = 2 E , . h p U A S P  1 U” = dX”1d.r 
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up to an affine transformation of the proper time. However, the interaction with an 
external electromagnetic field cannot be minimal when the problem is stated in terms of 
the effective variables. 

A similar renormalisation procedure has been proposed by Corben (1962), but in 
general it requires a variable mass for the spinning particle and the kinematical 
condition X,,,Uy = 0 does not hold for the effective variables. 

3.2. Angular-momentum-type conserved quantities 

One may also look for a conserved antisymmetric tensor JPy which could be used to 
represent the angular momentum of the system. For this purpose it is convenient to 
represent JFY in a basis of six independent antisymmetric tensors, namely 

JFY(7) =A(T)(x,u, -x,u,) +B(T)(x ,~~,  -xyci,)+ C ( T ) ( X , P ~  -xYp,) 

+ D ( T ) ( U , &  - u&,)+E(T)(u~Pc~v -U$,) +F(T)U,Y. (3.2.1) 

It may be seen that the conservation equations are now 

A (7)  + w'(T)B (7)  = o 

and 

2ME 4M 
1 + E  1 + E  

~ ( T ) + ~ E ( ~ ) + ~ D ( T ) + C ( T ) - F ( T ) = O  

(3.2.2) 

(3.2.3) 

P(7) - w ' ( T ) E ( T )  = 0. 

The system (3.2.2) is identical to (3.1.13) and accordingly its general solution may be 
written in terms of the functions T'"(t) defined in (3.1.17)-(3.1.19). 

Using now the variable t introduced in (3.1.14) the system (3.2.3) may be separated 
into the third-order differential equation 

A ' ( t )  
2(1+E2) t 2 F y f )  + tF'(t) + 7- t F ' ( t )  - tF(t )  = - 

(E1 2, ME 
(3.2.4) 

and the auxiliary equations 

1 + E 2  1 + E 2  
D(t )  = -(F(t)-F"(t) - C(t ) ) .  (3.2.5) 4 M  E( t )  = -F'(t) 

2 M ~ t  

It may be seen that the general solution of (3.2.4) is a linear combination of the three 
independent solutions 

a 
F'"(t) = T'"(t, €)-2E(1 +E2)-T'"(t, E )  i = 1,2,3.  (3.2.6) at. 



Exact solutions of the motion equations 629 

Hence we have obtained three independent conserved antisymmetric tensors with the 
structure 

J:; ( t )  = X , C " '  -x,CE' +F"'(t)a,, 

+D"'(t)(u,O, - u,~,) +E"'(t)(u,p, - uvp,) i = 1,2 ,  3.  (3.2.7) 

Again, only J:; has a limit when t + 0 (T + -CO), and is a natural candidate to represent 
the total angular momentum of the particle-field system. 
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